What is Fusarium?

Fusarium species are ubiquitous and may be found in the soil, air and on plants. Fusarium species can cause mycotoxicosis in humans following ingestion of food that has been colonized by the fungal organism. In humans, Fusarium species can also cause disease that is localized, focally invasive or disseminated. The pathogen generally affects immunocompromised individuals with infection of immunocompetent persons being rarely reported. Localized infection includes septic arthritis, endophthalmitis, osteomyelitis, cystitis and brain abscess. In these situations relatively good response may be expected following appropriate surgery and oral antifungal therapy. Disseminated infection occurs when two or more noncontiguous sites are involved. Over eighty cases have been reported, many of which had a hematologic malignancy including neutropenia. The species most commonly involved include Fusarium solani, Fusarium oxysporum, and Fusarium moniliforme (also termed F. verticillioides). The diagnosis of Fusarium infection may be made on histopathology, gram stain, mycology, blood culture, or serology. Portals of entry of disseminated infection include the respiratory tract, the gastrointestinal tract, and cutaneous sites.

The skin can be an important and an early clue to diagnosis since cutaneous lesions may be observed at an early stage of the disease and in about seventy-five cases of disseminated Fusarium infection. Typical skin lesions may be painful red or violaceous nodules, the center of which often becomes ulcerated and covered by a black eschar. The multiple necrotizing lesions are often observed on the trunk and the extremities. Onychomycosis most commonly due to F. oxysporum or F. solani has been reported. The onychomycosis may be of several types: distal and lateral subungual (DLSO), white superficial (WSO), and proximal subungual (PSO). In proximal subungual onychomycosis there may be associated leukonychia and/or periungual inflammation. Patients with Fusarium onychomycosis have been cured following therapy with itraconazole, terbinafine, ciclopirox olamine lacquer, or topical antifungal agent. In other instances nail avulsion plus antifungal therapy has been successful. In patients with hematologic malignancy or bone marrow transplant, who may experience prolonged or severe neutropenia during the course of therapy, the skin and nails should be carefully examined and consideration given to treating potential infection sites that may serve as portals for systemic dissemination. When disseminated Fusarium infection is present therapy with antifungal agents has generally been disappointing with the chances of a successful resolution being enhanced if the neutropenia can be corrected in a timely manner.

How Mold Effects Us

After pollens, molds are the leading cause of outdoor airborne allergies, which can recur year-round. Some of the most common symptoms of those sensitive to molds include nasal stuffiness, eye irritation, wheezing, cold and flu-like symptoms, rashes, conjunctivitis, inability to concentrate, and fatigue. Mold exposure has also been associated with asthma onset. Symptoms usually disappear when the mold is removed. However, under certain conditions, exposure to mold can cause serious health problems. Some people with chronic illnesses, such as obstructive lung disease, for example, may develop mold infections in their lungs. Also, some people exposed to large amounts of mold at work, such as farmers working with moldy hay, may develop even more severe reactions, including fever and shortness of breath. Some molds are toxic, producing chemicals called “mycotoxins,” which in large doses may affect human health, usually by causing allergy-like symptoms such as watery eyes or eye irritation, runny nose and sneezing or nasal congestion, wheezing and difficulty breathing, aggravation of asthma, coughing, itching, or rashes.

Other health problems that have been linked to mold exposure involve the odors produced by mold “volatiles” during the degradation of substrates. These have been discovered to irritate mucous membranes, and they have been associated with a number of symptoms from headaches and nausea to fatigue in individuals exposed to them. For those suffering from multiple chemical sensitivities, the simple presence of these microbial volatile organic compounds (MVOCs) can trigger a reaction just as strong and serious as exposure to chemical VOCs. Fungi or microorganisms related to them may cause other health problems similar to allergy. Some kinds of Aspergillus especially may cause several different illnesses, including both infections and allergy. These fungi may lodge in the airways or a distant part of the lung and grow until they form a compact sphere known as a “fungus ball.” In people with lung damage or serious underlying illnesses, Aspergillus may grasp the opportunity to invade and actually infect the lungs or the whole body.

In some individuals, exposure to these fungi can also lead to asthma or to an illness known as “allergic bronchopulmonary aspergillosis.” This latter condition, which occurs occasionally in people with asthma, is characterized by wheezing, low-grade fever, and coughing up of brown-flecked masses or mucous plugs. Skin testing, blood tests, x-rays, and examination of the sputum for fungi can help establish the diagnosis. Corticosteroid drugs are usually effective in treating this reaction; immunotherapy (allergy shots) is not helpful. The occurrence of allergic aspergillosis suggests that other fungi might cause similar respiratory conditions. Inhalation of spores from fungus-like bacteria, called “actinomycetes,” and from mold can cause a lung disease called “hypersensitivity pneumonitis.” This condition is often associated with specific occupations. For example, farmer’s lung disease results from inhaling spores growing in moldy hay and grains in silos. Occasionally, “hypersensitivity pneumonitis” develops in people who live or work where an air conditioning or a humidifying unit that is contaminated with these spores emits them.

The symptoms of “hypersensitivity pneumonitis” may resemble those of a bacterial or viral infection such as the flu. Bouts of chills, fever, weakness, muscle pains, cough, and shortness of breath develop 4 to 8 hours after exposure to the offending organism. The symptoms gradually disappear when the source of exposure is removed and the area properly ventilated. If it is not removed, workers having to be in those contaminated areas must wear a protective mask with a filter capable of removing spores or change jobs. If “hypersensitivity pneumonitis” is allowed to progress, it can lead to serious heart and lung problems. Also, air with a high concentration of fungal spores of a number of different types of molds may contain toxins that, when breathed over a long period of time, may result in a kind of poisoning. Stachybotrys atra, a mold that is commonly found on wet cellulose products (for example, drywall) and is causing growing concern among physicians, is one of these molds. In one recent study, it was linked to lung bleeding in infants. This mold has also been linked to sudden infant death syndrome and to central nervous system symptoms such as personality changes, sleep disorders, and memory loss.